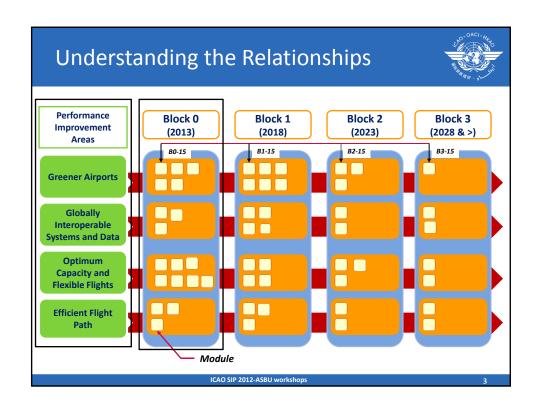
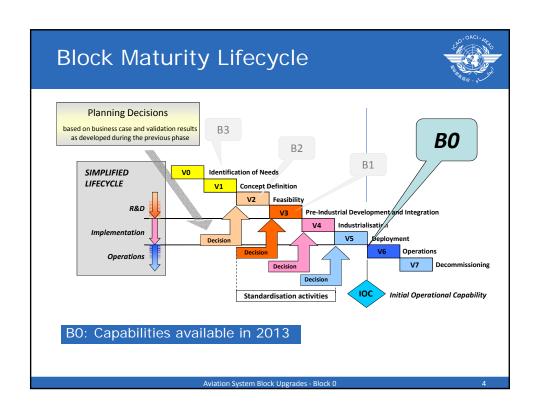
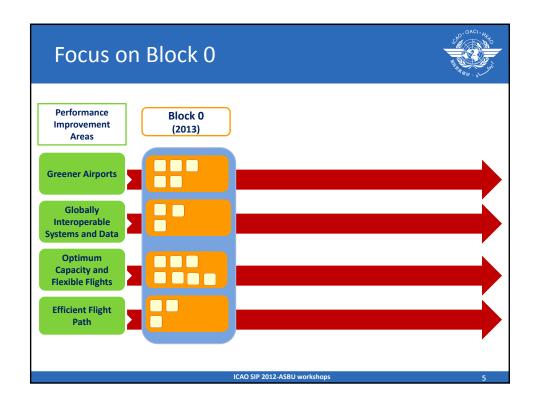


Aviation System Block Upgrades Block 0

Preparations for AN-Conf/12 – ASBU Methodology Lima, 15 May 2012


Outline




- Block understanding
- Block Maturity cycle
- Block 0 Modules
- Block 0 perspective
- Technology roadmap
- Block 0 implementation
- Summary and conclusion

ICAO SIP 2012-ASBU workshops

Global Readiness Checklist

Global Readiness Checklist		Status (ready or date)
	Standards Readiness	√
	Avionics Availability	√
	Infrastructure Availability	√
	Ground Automation Availability	√
	Procedures Available	√
	Operations Approvals	√

- Each Module is evaluated for its readiness
- If any component is not found to be ready it moves to a future Block for implementation
- Those Modules that are not specifically ready at a Block release are noted as "dates of readiness"

All Block 0 Modules Have Met the Readiness Criteria

Aviation System Block Upgrades - Block (

Greener Airports (PIA 1)

B0-15

Improved Runway Traffic Flow through Sequencing (AMAN/DMAN)

Time-based metering to sequence departing and arriving flights

B0-65 - Optimization of Approach Procedures including Vertical Guidance

This is the first step toward universal implementation of GNSS-based approaches

B0-70

Increased Runway Throughput through Wake Turbulence Separation

Improved throughput on departure and arrival runways through the revision of current ICAO wake vortex separation minima and procedures (re-categorisation, CSPR and WIDAO)

B0-75

Improved Runway Safety (A-SMGCS)
Airport surface surveillance for ANSP

B0-80

Improved Airport Operations through ACDM

Airport operational improvements through the way operational partners at airports work together

The combined Block 0 Modules reduce fuel consumption and noise by improving arrival efficiencies and improving information sharing

ICAO SIP 2012-ASBU workshops

7

Globally Interoperable Systems and Data (PIA 2)

R0-25

Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration

Supports the coordination of ground-ground data communication between ATSU based on ATS Inter-facility Data Communication (AIDC) defined by ICO Document 9694

B0-105 – Meteorological information supporting enhanced operational efficiency and safety

This module includes meteorological information supporting automated decision processes or aids such as meteorological information translation, ATM decision support. This module enables the reliable identification of applicable ATM solutions when meteorological conditions are impacting (observed) or expected to impact (forecast) aerodromes or airspace

B0-30

Service Improvement through Digital Aeronautical Information Management

Initial introduction of digital processing and management of information, by the implementation of AIS/AIM making use of AIXM, moving to electronic AIP and better quality and availability of data

In Block 0 we improve overall operations and continue to enable Collaborative Decision Making through improved interfacilities communications using standard information formats and baseline Met Services

ICAO SIP 2012-ASBU workshops

Optimum Capacity and Flexible Flights (PIA 3)

B0-10: Improved Operations through Enhanced En-Route Trajectories

Implementation of performance-based navigation (PBN concept) and flex tracking to avoid significant weather and to offer greater fuel efficiency, flexible use of airspace (FUA) through special activity airspace allocation, airspace planning and time-based metering, and collaborative decision-making (CDM) for en-route airspace with increased information exchange among ATM stakeholders

B0-35:Improved Flow Performance through Planning based on a Network-Wide view

Collaborative ATFM measure to regulate peak flows involving departure slots, managed rate of entry into a given piece of airspace for traffic along a certain axis, requested time at a waypoint or an FIR/sector boundary along the flight.

B0-101 ACAS Improvements

This addresses short term improvements to the performance of the existing airborne collision avoidance systems (ACAS).

B0-85: Air Traffic Situational Awareness (ATSA)

ATSA provides a cockpit display of a graphical depiction of traffic to assist the pilot in out-the-window visual acquisition of traffic:

B0-86: Improved access to Optimum Flight Levels through Climb/Descent Procedures using ADS-B

The use of In Trail Procedure (ITP) facilitates en-route climb or descent to enable better use of optimal flight levels in environments where a lack of ATC surveillance and/or the large separation minima currently implemented is a limiting factor.

Using procedural concepts (e.g. RNP, FUA, etc.) and Air Traffic Situational Awareness - combined with enhanced planning tools and information sharing, the enroute phase of flight supports additional capacity and flexibility using the Modules of Block 0

ICAO SIP 2012-ASBU workshops

9

Optimum Capacity and Flexible Flights (PIA 3) - Continued

B0-84 – Initial surveillance capability ADS-B Out, MLAT

Ground surveillance supported by ADS-B OUT and/or wide area multilateration systems will improve safety, especially search and rescue and capacity through separation reductions.

B0-102 – Baseline Ground-based Safety Nets

To monitor the operational environment during airborne phases of flight, the alerts such as Short Term Conflict Alert, Area Proximity Warnings and Minimum Safe Altitude Warnings are proposed in this module. Ground-based safety nets make an essential contribution to safety and remain required as long as the operational concept remains human-centred.

Through ground based safety nets combined with ground surveillance the enroute phase of flight supports additional capacity, flexibility and safety

ICAO SIP 2012-ASBU workshops

Efficient Flight Path (PIA 4)

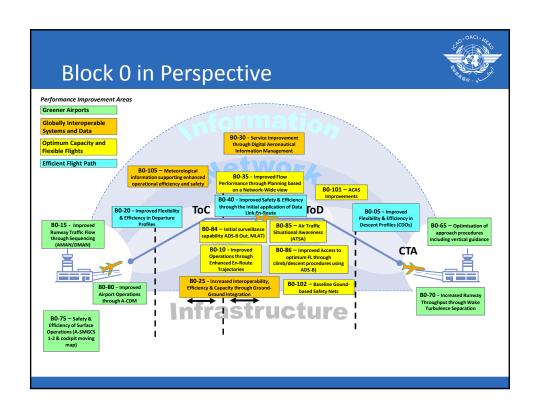
B0-05

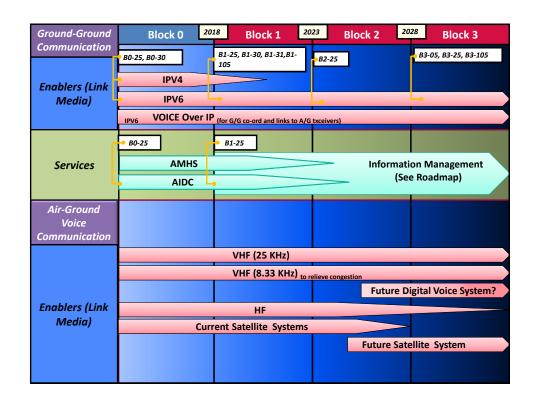
Improved Flexibility and Efficiency in Descent Profiles (CDOs)

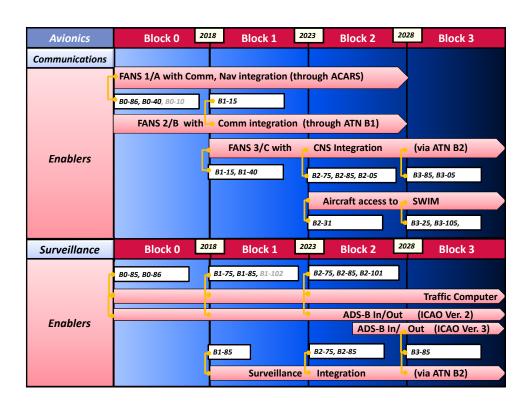
Deployment of performance-based airspace and arrival procedures that allow the aircraft to fly their optimum aircraft profile taking account of airspace and traffic complexity with continuous descent operations (CDOs)

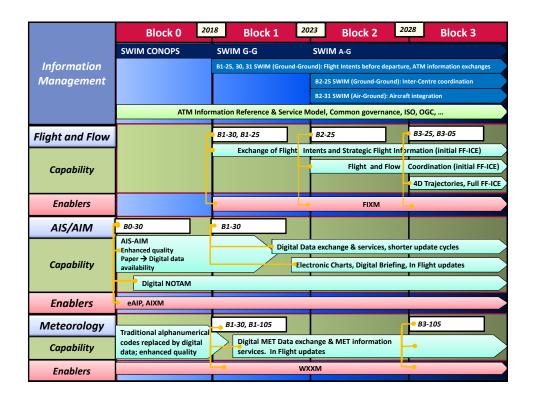
B0-20

Improved Flexibility and Efficiency in Departure Profiles


Deployment of departure procedures that allow the aircraft to fly their optimum aircraft profile taking account of airspace and traffic complexity with continuous climb operations (CCOs)


B0-40


Improved Safety and Efficiency through the initial application of Data Link En-Route Implementation of an initial set of data link applications for surveillance and communications in ATC


The use of procedurally based
Optimized Profile Climbs and
Descents as well as an initial
Data Link Capability helps to
establish a Block 0 capability for
improved operational
efficiencies

ICAO SIP 2012-ASBU workshops

Implementation – The Time is Now

- The Modules of Block 0 are ready for implementation today
 - Standards are ready
 The Infrastructure is available
 - Avionics are ready
 Ground Automation is ready
 - Procedures and Operational Approvals are in place
- Establishing the foundation for the future is now
- Care was taken to ensure that regional implementation of the Blocks or the Modules are well described and ready for implementation

Aviation System Block Upgrades - Block (

Summary and Conclusions

- The "Aviation System Block Upgrades" initiative is the best approach to reach our goals:
 - Enables global interoperability (which is our goal)
 - Develops clear solutions (block upgrades)
 - Establishes a transition plan (it's a well thought out way for going forward)
 - Support the development of a Global CNS/AIM and avionics roadmaps
- Block 0 is ready for deployment

Aviation System Block Upgrades - Block (

